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An lterative Learning Control Approach for
Radio Frequency Pulse Compressor Amplitude
and Phase Modulation

Amin Rezacizadeh, Roger Kalt, Thomas Schilcher, and Roy S Smith
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Pulse compression to achieve
higher accelerating gradients

 AKA “SLED” - SLAC Linac Energy SLAC 4 pass
Doubler _{> R

* |dea: Take the relatively long RF pulse s oo
generated by a klystron (around 3 ps), oo r:h\‘
and compress it to achieve a higher ~ reus L / =
amplitude pulse over a shorter time STROP>—
(around 0.7 us). T\ s \ E

. sps— 1

 How? Feed the klystron pulse into an T

RF cavity, then find some way to

FIG. 2~-A comparison of the present SLAC and SLED

extract the energy from the cavity RE systems.

quickly, and deliver it to the beam. 2 D Faras g G P B

1974



Great, but...

e Qutput amplitude has a steep I ; ; ; ;

slope. 6 \ -
* What if you want to accelerate two > D1
bunches with ~100 ns separation? . \ AIE
They will end up with significantly N V—
different energies, which might nqt 2.l OWER OUT— | )
be what you want. For example, in
an FEL, wavelength is proportional > |- _
to electron bunch energy, so it COVER TN
must be set precisely to meet user | pmmmm ]
requirements. \
0 [ Sy |
0 I 2 3 4 5 6
e Bunches with energy error aren't TIME ( usec)

matched to the linac lattice,
_ _ FIG. 7--Input power to and output power from the
CaUSIHQ emittance b|OW—Up, SLED microwave network as a function of

time.



Controlling the output pulse shape by
modulating the input to the klystron

Vector Pre-
Master Modulator  gpplifier

Oscillator f 4 r\ \ Vv V
/, | \\\ g r
@== : | — Klystron -

SwissFEL's solution: build a Q\/I o o
feed-forward system that e
measures the output from the N e o |
cavity, digitizes | and Q R P e L
waveforms, then determines a _“lzc_elgr;tilg_s}rﬂc_m;f ——————————————————
correction to apply to the beam axis | m
klystron drive pulse. E E

Figure 1: The simplified RF layout of a C-band RF station
in the SwissFEL beamline.



Hardware setup

¢ | 0ooks pretty standard: convert the
cavity output to IF, digitize, and

Vector Pre-

demodulate to an | and Q e Mo i BOC
representation digitally. O@:C / E/ K|ystm,1;>vg _ Vr

e An “lterative Learning Control” o| |1 &)
system calculates a function by O T T
comparing the measured | and Q to - |
reference | and Q waveforms (they D o i o ST A
just want to make phase and e oo )
amplitude constant over the output _"_Alc_el;;t;g_ s};{m}e" __________________
pulse duration, but could probably beam axis [ [ \ +©©OOOOOO+
design a custom shape too)

RF Ioa;E RF Ioa%

° Transfer funpthn for RF ampllfler Figure 1: The simplified RF layout of a C-band RF station
chain + cavity is used to calculate in the SwissFEL beamline.

new | and Q waveforms for klystron
drive pulse.



Finding the transfer function
for the system

Relationship between klystron output voltage and compressor cavity
voltage is:

aV, = V(1 + jtrAw) + TV,
Where a is related to the cavity coupling coefficient, ris the filling time
of the pulse compressor.
The reflected wave from the pulse compressor is given by:
Vi, = V. -V,
Discretize the first equation and do the Z-transform (sort of a discrete
Fourier transform), and you can find the transfer function for the cavity:

- Vi(z) T(a—1)—7— jTstAw + 7271
N V,(2) a T +7+ jTe7Aw — 7271

Goc(?)

RF drive (modulator, pre-amplifier, and klystron) are modeled as a 1st-order low
pass system. So, overall transfer function from DAC inputs to cavity output is:

'7_1 GBgc(Z).




| and Q representation

Using “lifted system representation” the equations can be
written in an | and Q representation:

yr + jyo = Gro (ur + jug)

-

where Giq is a NxN “lower-

I
Model
Measured data

o
o
T

triangular Toeplitz matrix of the
impulse response h(k)” derived

o

In-phase [arb. unit]

from the transfer function. o+ = 8 4 5 8 7

Giq is then split into real and
imaginary parts G and Gj such

Quadrature [arb. unit]

that Giq = Gr + |Gi: |

yr = Grur — Giug Comparison of the model’s
predicted output vs. measured |

yo = Giur + Grup.
N “ and Q waveforms.



Cost Function

Stacking the | and Q terms, you get the following expression
for the relationship between input and output signals:

y=Gu+d, y,uecR*?”, GeR*V*2N

Where d Is the output disturbance, which captures the
uncertainty about the system. The algorithm will make
several iterations. Measured output at an iteration I’ is:

Y, = Gu; +d

The optimization algorithm calculates the input for the next
iteration (ui+1) as the solution of an optimization problem that
minimizes the following cost function:

Jiv1(wir1) = llya — yir1 % + wirs — wil %

X and R are positive NxN diagonal matrices. How are they
determined?



Calculating the Optimal
INnput

The disturbance term can be estimated from the current

iteration:
d~ vy, — Gu;

Which you can plug into the cost function to give:

-~

Ji—l—l(ui—l—l) — u;l"'_'—l (R + GTXG) Uj1-1
— 2 (U;FR + (yd — Y; + GUZ)TXG) Ui+1

From which the optimal input for the next iteration can be
calculated:

Uja1 = U; + (R + GTXG)_lGTX (ya —yi),Vi >0



Finally, The A\gonthm

1:  Initialize Phase jump regime: constant amplitude, phase 0.025
jump of 180° = -)I(- Phass Moduiation
= :\tt 0-02*; & O ILC-based method |
. [0}
2: Do © D oots-
2o
3 Measure the output I and @ waveforms o 3 00t .
> =
. . - Q (o) :
4: Compare to the reference trajectories, e; = yq — yi. o 5 0005 0.0..0 pi
o 0 0 g0 0 ¢ 0 0 0 g O
5 Update the input waveforms % > 4 6 & 10 12 14 16 18
Uit1 = U; + (R -+ GTXG)_lGTXei\V/i > 0. 2* '
. . o)
6 Check the limits ujow < Uit1 < Uyp § ol
. Qg I
7. If Convergence achieved 58 -
>. ()] 1+
8 Stop S =
:g 0.5 1— o " o o B 0240 40 (350000, 9 AT 1 031820200 b AR b 10 e 0 B0 A6 0 8 &
9 Repeat @ 5 % %27 0000900°%°000000
0 2 4 6 8 10 12 14 16 18

Iteration index

For each iteration, | and Q is measured over ten beam
pulses, to suppress noise. After the input waveform is
updated, the algorithm pauses for a while to let the cavity
temperature re-equilibrate.



Klystron Input Waveform
Before and After Optimization

‘Phase jump’ waveforms are used as a starting point for the algorithm.
Before After
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(Phase modulation is an alternative scheme mentioned in the paper, where the
phase waveform is analytically determined in advance, and programmed into the
modulator. It is shown for comparison to the ILC approach.)



Cavity Output Waveforms
After Optimization
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(Compare ‘phase jump’ before to ‘ILC based’ after)



Remarks and Questions

Authors report losing about 20% of the potential energy gain by using
this flattening scheme, which is a pretty steep cost.

“10 output waveforms are captured and filtered to suppress both
random noise as well as the repetitive non-lIQ demodulation patterns.”
What are the details of this filtering”? Just averaging?

Not much discussion of the stability of this system, besides “the delay
must be precisely measured, otherwise the algorithm may run into
instability”. With fancy digital control, how easy is it to determine the
stability conditions? Is it even possible?

The algorithm seems to be something that runs until it converges, and
then it stops. How often does it need to run? Will drifting environmental
conditions for klystron and cavity invalidate the learned pulse shape?



Extensions

* They use reference | and Q waveforms which give
a flat phase and amplitude. How well will this
scheme work for arbitrary phase and amplitude
waveforms”? Could you create custom waveforms
with finely-tuned bunch energy and/or phase
differences? (You'd still have some issues with
bunch energies not being matched to the lattice, so
there are some external limits to how far you can

go.)




